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THERMOELASTIC STRESSES IN 
CERAMIC FIBERS 

I. A. Filimonov and Yu. M. Grigor'ev 

C O M P O S I T E  

UDC 539.03 

A calculation of stress and deformation fields in ceramic fibers formed by the method of chemical vapor 

deposition onto a heated substrate is performed within the framework of linear elasticity theory. Optimum 

parameters for fibers with a homogeneous structure, a layered structure, and a gradient one are sought. 

In the process of forming fibers by the method of chemical vapor deposition onto a heated substrate from 

a mixture of reactive gases, both product layers that are homogeneous in composition and structure and that are 

inhomogeneous (multilayer fibers, gradient fibers, etc.) may form. At temperatures that are different from the 

conditions of synthesis for fibers fields of stresses and deformations arise in the latter, of which tensile stresses 

are the most "hazardous" to ceramic materials. In the present work we state and solve the problem of calculating 

thermal stresses in homogeneous, laminated, and gradient fibers within the framework of linear elasticity theory 

and seek conditions under which tensile stresses become minimum. The results obtained can be used to optimize 

the phase composition and structure of fibers, which is of great practical interest in developing composite materials 
of a new generation. 

1. Statement of the Problem. Current methods for calculating stress-strain states in composite materials 
are usually based on the hypothesis of uniform deformation for all components of the composite [ 1 -4  ] or on using 

ideas of the so-called "close relationship" between the composite elements (equality of components of the 

displacement vector and the corresponding components of the stress tensor on interfaces between the elements) [5, 

6 ]. The present work deals with the case of a spatial distribution of the thermal expansion coefficient (TEC) while 

the remaining parameters of the system are considered as equal. The initial specimen is a thread (cylinder) with 

the characteristic dimension R, onto which a product layer of thickness 6 is deposited at temperature TO. Upon 

deposition of the coating the temperature of the thread-product layer system changed slowly to some T. By assuming 
that in the absence of external forces when T O is prescribed the fiber is in the underformed state and the difference 

(T -To)  is small we find the relationship between the field of the stresses Pik that emerge in the system at 
temperature T and the characteristics of the coating for different cases of the dependence a [C(r) ] where C is some 

parameter, for example, the concentration of a deficient reagent, governing the TEC of the coating layer at point r. 

The assumptions made permit the use of the expression for the compound energy of a body deformed with 

change in temperature [7 ]: 

1 )2 k 2 
F (T) = F (To) - lax [C ] (T - TO) Ull + ~ Uik -- ~ t~ik Ull -t- -~ UU, 

whence, in view of the equilibrium conditions 
for deformations 

(OPik/OX k) = 0, where Pik = (OF/OUik), we can obtain the equation 

1 - o  3 1 - 2 c r  
3 ~ g r a d d i v ~  2 1 + 2 ~ r ~ 1 7 6  TO) g r a d a ,  (i) 

which together with the condition of finite deformations at the center of symmetry 
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E I r=0 < oo (2) 

and the condition of vanishing radial stresses on the free surface of the coating 

Pr~[ r=R+,~ = 0 (3) 

governs the mathematical formulation of the stated problem. 

Thus, we have come to problem (1)-(3), which is identical in mathematical aspect to the problem of 

equilibrium of nonuniformly heated isotropic solids (see [7, pp. 35 and 36 ]). However, the equilibrium conditions 

for heated (cooled) but no longer homogeneous (with respect to a) solid systems are dealt with physically here. 

2. Results of the Calculations. Due to the symmetry of problem (1)-(3) (~ ] I r, u = K(r), i.e., rot K = 0), 

we can reduce Eq. (1) to the simpler form 

d [ l d ( r n u ) )  - l d r  r n dr 3 l l + ~ ( T - T o )  d a ' - ~  dr (4) 

Here n = 0, 1, 2 is plane, cylindrical, and spherical symmetry. Integrating Eq. (4) with boundary conditions (2) 

and (3) yields in the case of cylindrical symmetry (n = 1) 

( l + c r ) ( T - T o )  {1 f C l r }  (5) 
= " ardr + T ' u 3 ( 1 - a )  r 0 

Urr 
(I + a) ( T -  T~ a - - -~  adr + 

r 0 .' 3 (1 - a) 

1 
u~~ ~ = r u ' Uzz = O , uik l i ~ k = O , 

C1 - (1 - 2or) 1 R+~ 
2 (R + 6) z fO ardr - (1 - or) a I R+~, (7) 

where Uik is the deformation tensor and there is a linear relationship between uik and the stress tensor Pik: 

E 
= (1 + cr) (1 - 2 r) [(1 - a)  + a + u=)  1,  

(8) 

E 
Pik = (1 + a) (1 - 2or) [(1 - 2a) uik + aUll6ik ] . 

Homogeneous Fibers. We consider a step distribution of the TEC, conforming to this case, in a cylindrically 

symmetric system: 

a = a o for 0 < r < R ;  
(9) 

a = a  c for r > R .  

The deformation and stress fields (see (5)-(8)) that correspond to the distribution (9) have the form 

= I  $ ( 1 - v )  [ l + ( 1 - 2 c r )  R Z / ( R + 6 ) 2 1 ,  $ <  1; (10) 
O) 

( l - v )  [1 /r  RZr ~> 1, 

where 
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Fig. 1. Defo rmat ion  and  s t ress  f ie lds  in a W - B  sys tem:  a(W) = ao 

- 4.6.10 -6 K -1, a(fl) = a c = 1.1- 10 -6 K -1, E(W) _- E(B) = E = 410 HPa,  

c, = 0.24, T - T  o = -103  K, 6 / R  = 1. p, HPa. 

= 6 ( 1  - t ~ ) u / ( 1  - I - a ) % R ( T -  T0),  ~ = r / R ,  V = a c / % ,  

(1 - v) [1 + (1 - 2c 0 R2/(R + ~)21, ~ < 1 ; 

~'rr= (1 - -  v) (1 - -  2(~) [ R Z / ( R + O ) 2 -  1/~2] ,  ~ >  1; 

( l - v )  [1 + ( 1 - 2 0 ' ) R 2 / ( R + 6 ) 2 ]  ' ~ <  1; 

7~o~o = ( 1 - v ) ( 1 - 2 ~ )  [1/~ 2 + R 2 / ( R + ~ ) 2 ] ,  ~ >  1; 

(11) 

~]Z,Z = 
( 1 - v )  2o[1 + ( 1 - 2 a )  R2/(R+cS)2]; ~<  1; 
(1 - v) 2o (1 - 2or) R Z / ( R  + ,5) 2 , ~ > 1 ," 

~iIr = Pi~ 6 (1 - 2or) (1 - a ) / E %  (T  - To) .  

We note at once that in the statement of problem (1)-(3) in question the length of the thread with a coating 

is considered as constant (as for a bar with fixed ends). Therefore  it is natural that as the coating thickness 3 tends 

to zero the stressed state does not vanish in the specimen [7 ]. 

Figure 1 presents results of calculating the deformation and stress fields in the W - B  system, whose 

parameter  distribution corresponds to the case (9). We observe maximum deformations on the surface-coating 

interface, and the value of the deformations decreases as the absolute value of the factor (1 - v) (T - TO) decreases 

or the coating thickness increases (see (10)). The stress jump on the surface on which the coating is deposited is 

independent  of the coating thickness (see (11)). However, the value of the stresses in the fiber core (~ < 1) 

decreases monotonically with an increase in the thickness of the deposited coating. A similar situation holds for 

the azimuthal and axial stresses in the coating. On the other hand, the absolute value of the radial stresses grows 

in the coating as the coating layer increases (see (11)). 

As is evident from (1 l) the sign of the stresses in the fiber core or the coating is always governed by the 

factor (1 - v) (T - TO). There  are no values of this factor at which all the stresses in the coating would be of the 
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TABLE 1 

Type of the 
coating 

Homogeneous 

Gradient 

Multilayer 

Parameter region 

(1-v)(T-T0) > 0 

( 1 - v ) ( T - T o )  < 0 

(1-v)(T-T0) > 0 

( I - v ) ( T - T o )  < 0, a > 1/4 

( 1 - v ) ( T - T o )  < 0, a<  1/4 

0 < v <  1-a[l+l/l+fll, 
T-T0 > 0 

1 - a [ l + l / l + f l l < v <  1 - a  

T-T0 > 0 

1 - a < v <  1- (~ /1  +/~) x 
a(1+22), T - T  0 > 0 

radial 

+ 

+ 

e 

@ 

+ 

+ 

v > 1 - ( f l / l + f l ) a ( l + 2 ) ,  

T-T0 >0 

0 < v < l - a [ l + l / 1 - 2 a ] ,  

T - T 0 <  0 

1 - a [ l + l / 1 - 2 a ]  <v < 1-  

- ( f l  / l +f l )a(1-  2,t), 
T-T0<0 

v > 1 - ( f l / l+ f l )a ( l+2~) ,  
T-T0 < 0 

+ 

Type of cracks 

(3 

azimuthal 

+ 

+ 

@ 

+ 

axial 

+ 

+ 

+ 

+ 

@ 

@ + 

+ + 

Note 

1) cracking on the 
boundary with the 

core 

2) scaling off on the 
boundary with the 

core 

1), 2) 

3) cracking on the 
coating surface 

4) scaling off on the 
periphery, 1) 

1), 4) 

the value of the 
corresponding radial 
stresses can be made 
as small as desired, 

4) 

2) 

2), 3) 

1), 2), 3) 

1), 3) 

same sign for the TEC step distribution (9). Therefore in similar systems there will always be tensile stresses, 

along with compression ones, in the coating layer (Fig. 1, Table 1). 

Gradient Fibers. A coating that ensures a piecewise linear distribution of TEC can exemplify this system: 

a = a 0 for 0 < r < R ,  

a = a  0 + ( a  c - a 0 ) ( r - R ) / 6  for R _ r _ < R + 6 .  

(12) 

Figure 2 gives the deformation and stress field for the W-BC system in which the TEC changes linearIy, 
depending on the volume content of boron and carbon, from the fiber core TEC (a o at r = R) to some a c (at r = R 

+ 6). Here, unlike the step distribution (9), the region of maximum deformations lies inside the coating rather than 
on the core interface, and the transition from expansion to compression (or vice versa) occurs smoothly: 
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gO = 

(1 - ~) 2(1 - o) - 1(1 -2o)  [ 2 - R +  R R2 
3 8 8 (R + di) 2 

, ~ < 1 ;  

(1 - v) 2 ( 1 - c r ) - l ( 1 - 2 a )  [ 2 - R + R x  
3 8 8 

(13) 

x ( R + ~ ) 2  - ~  3 3t 2 ' " 

The stress distribution in this system is continuous jump-free. Nevertheless, as for the step TEC, the value of the 
stresses in the fiber core decreases monotonically with an increase in the deposited coating thickness: 

(l_v) [2(l _o)_l (l_ 2a) I2_R + R R2 
3 8 8 (R + 8) 2 

( l - v )  2 ( 2 - ~ )  + R 1 (1 - 2a) a 7 ( 2 - o ) - 3  (R+8) 2 

3 8 a 7 ' ~ >  1; 

8 < 1 ;  

(14) 

Y~o 9 = 

(1 - v) I L(1 -2r [ 2 _ 8 +  2(1 - a ) -  3 6 ] 8 (R + 8 )  2 ' 

1(1 - 2a) [2 - R + R R 2 
( l - v )  2 ( 1 - c r ) - 3  ~ 7 8 (R+6)  2 

 _+2o .1,11 r 3 3~ 2 
~ > 1 ;  

~ < 1 ;  

2 a ( 1 - v )  [ 2 ( 1 - a ) - l ( 1 - 2 a ) [  2 - R 3  8 

2or ( l -v )  [ 2 ( 1 - c 0 - 1 ( 1 - 2 a ) [  2 - R 3  8 

x - ( ~ -  1) e >  1 
( R  + 8 )  2 ' " 

R R 2 + 
8 (R + 8) 2 

+Rx 

9 ~ < 1 ;  

125 



0 

-2O 

P 
1 
| 

\ 

"ll.4 
~ ~ . ~ J  

! 

:HI 
I � 9  

/ o 

."Pg'cr 

Fig. 2. Deformation and stress fields in a system with a gradient coaling of 
W-BC: ao = 4.6.10 -6 K -1, <z c = 1.1.10 -6 K -1, E --- 410 HPa, a = 0.27, 

T - T o = - 1 0 3 K , ( 3 / R =  1. 

A similar situation holds for stresses in the coating if the Poisson coefficient a has a limited value (a < 1/4) or the 

coating thickness is small (cS/R ~ 1 (see (14)). In the alternative situation of thickly coated materials (a >_ 1/4,  

6 / R  >> 1) that deform sufficiently strongly in the direction opposite to the applied force, the picture is somewhat 

different for azimuthal stresses. They change their sign. Finally, compressive azimuthal stresses are followed by 

tensile ones for (1 - v) (T - To) < 0 and vice versa for (1 - v) iT - TO) > 0 (see (14)). 

The sign of the stresses in system (12), similarly to the case (9), is governed by the factor ( l - v )  

( T - T  o ) but, unlike the latter, there is some region of parameters here for which all stresses appearing in the system 

will be, for example, compressive ones (see Fig. 2 and Table 1). 

We note that the ceramic coatings of interest have a substantially lower breaking strength than compressive 

strength [8 -10  ]. Therefore the first problem that we need to solve in designing these coatings is minimization (or 

total elimination) of dimensions of the tensile stress region. From this point of view the advantange of the gradient 

coatings (12) is evident. Indeed, we are able to eliminate these regions for all possible parameters v, a, T/To of 

the system with the TEC step distribution (9) in the fiber. They will appear in the coating as radial scaling-off 

stresses for (1 - v) (T - To) < 0 (cooling of a coating with a TEC smaller than in the core or heating of a coating 

with a larger TEC) or as azimuthal or axial cracking stresses for (1 - v) (T - TO) > 0 (Table 1). It is of interest 

that in the gradient coatings (12) cracks of a different type as compared to the systems (9) can appear for 

unfavorable parameters of the system: azimuthal ones but developing from the outer surface of the coating. 

Multilayer Fibers. We consider multilayer fibers, using a system with a step multilayer distribution of the 

TEC as an example: 

a = a 0 when 0 < r < R ,  

a = a  c when R + A ( 1  +fl)  i < r < R + A  [(1 +fl)  i +  1] ,  (15) 

a = a  c + h  when R + A  [(1 +f l )  i +  1 ] < r < R +  

+ A ( 1  + f l ) (1  + O, i = 0  . . . . .  N .  

Omitting cumbersome expressions here for the deformation and stress fields that appear in system (15), we 

illustrate the obtained results in Figs. 3 and 4 for the W - S i C - B 4 C  system. 
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Fig. 3. D e f o r m a t i o n  f ie ld  in a s y s t e m  with a m u l t i l a y e r  coa t ing  of 

W - S i C - B 4 C :  a 0 = 4.6.10 -6 K -1, a c -- 5.9.10 -6 K -1, c~ c + h = 7.1-10 -6 

K - 1 , E -  4 1 0 H P a ,  a - - 0 . 2 7 ,  T - T  o = - 1 0 3 K , A / R = 0 . 1 , a )  N = 3 ,  f l =  

9 ;b )  N = 9 ,  f l=0 .1 .  

P 
17.2 

0 

-0.Z 

-0.4 

-O.b 

hz 

. . 

1 

I 

1 

�9 o �9 �9 �9 �9 

~  . ~ . p ~ J 

m ,  j � 9  o ,  . o  

Fig. 4. Stress field in a system with a multilayer coating of W - S i C - B 4 C :  a 0 
= 5.9.10 -6 K -1, c~ c = 4.6- 10 -6 K -1, a c + h = 7.1.10 -6 K -1, E-= 410 HPa, 

a =  0.27; T -  r o -- 103 K, A / R  = 0.1, N - -  3, fl = 0.1. 

1. The  deformation field in the coating (15) has a sawtooth form. The frequency of deformation peaks 

decreases with an increase in the thickness of the coating material interlayers (with an increase in A or r )  and 

their  magni tude increase. Depending on the relation between the interlayer thicknesses r ,  we can observe a 

deformation maximum near the boundary with the fiber core or near the outer surface (Fig. 3). 

2. The stresses change in steps in the fiber (Fig. 4). As the interlayer thickness increases, the frequency 

of the steps decreases but their amplitude remains constant. 

3. A calculation shows that a pure mechanical increase in the number of layers in the coating does not 

result in a substantially altered picture of the stresses near  the surface of the coated thread. 

4. However, what is most important is that despite the step change in the stresses in system (15) there is 

some region of parameters 
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1 - ( - - f l - - - )  ( 1 + 2 2 ) >  > 1  a [  " i - ' ~ J '  1 + / 5  a v - 1 +  1 

V = ac/C~ O, a = h / a  O, 2 = A / R ,  

T - T o > 0 ,  

(16) 

in which we are able to practically eliminate tensile stresses (see Fig. 4). A change in any parameter (for example, 
/5) that results in violation of condition (16) induces tensile stresses at once (see Table 1). 

Conclusion. Thus, the performed investigation shows that the experimentally observed [11 ] advantage of 
gradient and multilayer coatings over ordinary homogeneous ones with a TEC jump on the boundary with the fiber 
core is due to the possibility of properly selecting parameters of the system and eliminating tensile stresses. How- 
ever, we need to note that these investigations took no account of adhesion between the coating layers and of the 
coating itself to the covered thread [8 ]. The results obtained are valid for systems in which the adhesion force 
between the layers is smaller than the strength of the coating and the substrate, which is a rather widely occurring 
case. Situations with ideal adhesion were analyzed in [5, 6 ]. 

N O T A T I O N  

R, thread radius; Pik, stress tensor; a -- a(r), thermal expansion coefficient; r ,D,  radial coordinate; k,/z, 
moduli of hydrostatic stress and shear; Uik, deformation tensor; 3, Poisson coefficient; E, Young's modulus; a 0, 
fiber core TEC; ac, TEC in the coating; h, difference between the values of the TEC in the layers of a multilayer 
coating; A, thickness of the first layer in a multilayer coating; t5, relative thickness of the second layer in a multilayer 
coating. 
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